Metabolisme Karbohidrat (Glikogenesis)

Metabolisme Karbohidrat (Glikogenesis) - Hallo friend Insurance WCest, In the article you read this time with the title Metabolisme Karbohidrat (Glikogenesis), we have prepared this article well for you to read and take the information in it. hopefully the contents of the post Article Informasi, Article Pendidikan, which we write you can understand. okay, happy reading.

Title : Metabolisme Karbohidrat (Glikogenesis)
Link : Metabolisme Karbohidrat (Glikogenesis)

Read too


Metabolisme Karbohidrat (Glikogenesis)

;
Tahap pertama metabolisme karbohidrat adalah pemecahan glukosa (glikolisis) menjadi piruvat. Selanjutnya piruvat dioksidasi menjadi asetil KoA. Akhirnya asetil KoA masuk ke dalam rangkaian siklus asam sitrat untuk dikatabolisir menjadi energi.

Metabolisme Karbohidrat (Glikogenesis)

Proses di atas terjadi jika kita membutuhkan energi, misalnya untuk berpikir, mencerna makanan, bekerja dan sebagainya. Jika jumlah glukosa melampaui kebutuhan, maka dirangkai menjadi glikogen untuk cadangan makanan melalui proses glikogenesis.

Glikogen merupakan simpanan karbohidrat dalam tubuh dan analog dengan amilum pada tumbuhan. Glikogen terdapat didalam hati (sampai 6%) dan otot jarang melampaui jumlah 1%. Tetapi karena massa otot jauh lebih besar daripada hati, maka besarnya simpanan glikogen di otot  bisa mencapai tiga sampai empat kali lebih banyak. Seperti amilum, glikogen merupakan polimer -D-Glukosa yang bercabang.

Glikogen otot adalah sumber heksosa untuk proses glikolisis di dalam otot itu sendiri. Sedangkan glikogen hati adalah simpanan sumber heksosa untuk dikirim keluar guna mempertahankan kadar glukosa darah, khususnya di antara waktu makan. Setelah 12-18 jam puasa, hampir semua simpanan glikogen hati terkuras. Tetapi glikogen otot hanya terkuras setelah seseorang melakukan olahraga yang berat dan lama.
Rangkaian proses terjadinya glikogenesis digambarkan sebagai berikut:
1. Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.
2. Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.
Enz-P + Glukosa 6-fosfat Enz + Glukosa 1,6-bifosfat  Enz-P + Glukosa 1-fosfat
3. Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.
UTP + Glukosa 1-fosfat  UDPGlc + PPi
4. Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kea rah kanan persamaan reaksi
5. Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin
UDPGlc + (C6)n  UDP + (C6)n+1
         Glikogen       Glikogen
Residu glukosa yang lebih lanjut melekat pada posisi 14 untuk membentuk rantai pendek yang diaktifkan oleh glikogen sintase. Pada otot rangka glikogenin tetap melekat pada pusat molekul glikogen, sedangkan di hati terdapat jumlah molekul glikogen yang melebihi jumlah molekul glikogenin.
6. Setelah rantai dari glikogen primer diperpanjang dengan penambahan glukosa tersebut hingga mencapai minimal 11 residu glukosa, maka enzim pembentuk cabang memindahkan bagian dari rantai 14 (panjang minimal 6 residu glukosa) pada rantai yang berdekatan untuk membentuk rangkaian 16 sehingga membuat titik cabang pada molekul tersebut. Cabang-cabang ini akan tumbuh dengan penambahan lebih lanjut 1glukosil dan pembentukan cabang selanjutnya. Setelah jumlah residu terminal yang non reduktif bertambah, jumlah total tapak reaktif dalam molekul akan meningkat sehingga akan mempercepat glikogenesis maupun glikogenolisis.
setiap penambahan 1 glukosa pada glikogen dikatalisir oleh enzim glikogen sintase. Sekelompok glukosa dalam rangkaian linier dapat putus dari glikogen induknya dan berpindah tempat untuk membentuk cabang. Enzim yang berperan dalam tahap ini adalah enzim pembentuk cabang (branching enzyme).
Glikogenolisis
Jika glukosa dari diet tidak dapat mencukupi kebutuhan, maka glikogen harus dipecah untuk mendapatkan glukosa sebagai sumber energi. Proses ini dinamakan glikogenolisis. Glikogenolisis seakan-akan kebalikan dari glikogenesis, akan tetapi sebenarnya tidak demikian. Untuk memutuskan ikatan glukosa satu demi satu dari glikogen diperlukan enzim fosforilase. Enzim ini spesifik untuk proses fosforolisis rangkaian 14 glikogen untuk menghasilkan glukosa 1-fosfat. Residu glukosil terminal pada rantai paling luar molekul glikogen dibuang secara berurutan sampai kurang lebih ada 4 buah residu glukosa yang tersisa pada tiap sisi cabang 16.
(C6)n + Pi  (C6)n-1 + Glukosa 1-fosfat
                                                Glikogen      Glikogen
Glukan transferase dibutuhkan sebagai katalisator pemindahan unit trisakarida dari satu cabang ke cabang lainnya sehingga membuat titik cabang 16 terpajan. Hidrolisis ikatan 16 memerlukan kerja enzim enzim pemutus cabang (debranching enzyme) yang spesifik. Dengan pemutusan cabang tersebut, maka kerja enzim fosforilase selanjutnya dapat berlangsung.

Glukoneogenesis
Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.
Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.
Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:
1. Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.

2. Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.


Such is the article Metabolisme Karbohidrat (Glikogenesis)

That's an article Metabolisme Karbohidrat (Glikogenesis) this time, hopefully can benefit for you all. okay, see you in other article posting.

You are now reading the article Metabolisme Karbohidrat (Glikogenesis) with the link address https://wcest.blogspot.com/2017/01/metabolisme-karbohidrat-glikogenesis.html